会员书架
首页 > 其他 > 创世鼻祖的发明家(4) > W·R·哈密顿

W·R·哈密顿

好书推荐:绝境黑夜想入媛媛仙工开物顶级掠食者七零之改嫁前夫发小天倾之后入骨温柔一事无成的我只能去当海贼王偏要勉强八零对照组再婚后,逆风翻盘了吞噬星空2起源大陆当维修工的日子如见雪来天命之上高武纪元志怪书怀娇猫总会被蝴蝶吸引CS:才16岁,让我老登逆袭?神农道君

天才一秒记住【杰克文学】地址:jkwxw.cc

W·R·哈密顿

19世纪爱尔兰著名数学家W·R·哈密顿提出了一个世界著名的问题:周游世界问题。

1859年,哈密顿拿到一个正十二面体的模型。我们知道,正十二面体有12个面、20个顶点、30条棱,每个面都是相同的正五边形。

他发明了一个数学游戏:假如把这20个顶点当作20个大城市,比如巴黎、纽约、伦敦、北京……,把这30条棱当作连接这些大城市的道路。

如果有一个人,他从某个大城市出发,每个大城市都走过,而且只走一次,最后返回原来出发的城市。问这种走法是否可以实现?

这就是著名的“周游世界问题”。

我们如果知道七座桥的传说,就会意识到这是一道拓扑学研究范围内的问题。

解决这个问题,方法很重要。它需要一种很特殊的几何思路。这种题是不能拿正十二面体的点线去试的。

设想,这个正十二面体如果是橡皮膜做成的,那么我们就可以把这个正十二面体压成一个平面图。假设哈密顿所提的方法可以实现的话,那么这20个顶点一定是一个封闭的20角形世界。

依照这种思路,我们就进入了最初步的拓扑学领域。最后的答案是,哈密顿的想法可以实现。

哈密顿是一位首先提出“四元数”的人。这个成果至今还镌刻在他天才火花闪现的地方。

复数可以用来表示平面的向量,在物理上有极其广泛的应用。人们很自然地联想到:能否仿照复数集找到“三维复数”来进行空间量的表示呢?

1828年开始,哈密顿开始悉心研究四元数。四元数属于线性代数的组成部分,是一种超复数。但在哈密顿以前,没有人提出四元数,哈密顿也是要解决空间量表示而研究的。

研究了十多年,哈密顿没有丝毫进展,他是一个数学神童,少有难题,这次可真遇上麻烦了。到1843年,哈密顿研究了整整15年。

有一天下午,夕阳无限,秋色爽丽,风景宜人。哈密顿的妻子见丈夫埋头研究问题,几乎不知寒暑不问春秋,于是很想让他外出放松一下,调节一下身体。

更多内容加载中...请稍候...

本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!

《创世鼻祖的发明家(4)》转载请注明来源:杰克文学jkwxw.cc,若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

目录 加书签
新书推荐:皇后的贴身侍卫18号公寓黑神话,不通关就灭世?我来助你你说他缺德?他根本就没有那东西全服第一弓箭手开局十选三,召唤十神将称霸异世东方神话集夏家有宝佳丽三千还不够,女帝你都上手了干白事儿怎么了?有种别叫我先生离婚倒计时,帝国上将夜夜叼我回巢亡灵法师召唤一群骷髅很合理吧重生之我从天龙活到现代魅魔男娘,大姐姐们都想感化我从种药开始苟道长生追风者:山花烂漫笑春风星穹铁道月下初拥的欢愉之旅四合院之刚穿越过来就要撵我走深山修仙二十年,方知身在秦时路人的修仙生存法则
返回顶部